Telegram Group & Telegram Channel
⤵️ Чем отличается метод градиентного спуска от стохастического градиентного спуска?

▪️ Метод градиентного спуска (Gradient Descent) — это оптимизационный алгоритм, который используется для минимизации функции потерь, обновляя параметры модели в направлении отрицательного градиента функции потерь. В каждом шаге используется весь обучающий набор данных для вычисления градиента.

▪️ Стохастический градиентный спуск (SGD) — это модификация, в которой градиент вычисляется только по одному случайно выбранному примеру данных на каждом шаге. Это делает процесс обучения быстрее, но более шумным.

Основное различие: градиентный спуск использует все данные, что делает его более точным, но медленным, а стохастический градиентный спуск быстрее, но может колебаться вокруг минимума из-за случайных обновлений.



tg-me.com/ds_interview_lib/795
Create:
Last Update:

⤵️ Чем отличается метод градиентного спуска от стохастического градиентного спуска?

▪️ Метод градиентного спуска (Gradient Descent) — это оптимизационный алгоритм, который используется для минимизации функции потерь, обновляя параметры модели в направлении отрицательного градиента функции потерь. В каждом шаге используется весь обучающий набор данных для вычисления градиента.

▪️ Стохастический градиентный спуск (SGD) — это модификация, в которой градиент вычисляется только по одному случайно выбранному примеру данных на каждом шаге. Это делает процесс обучения быстрее, но более шумным.

Основное различие: градиентный спуск использует все данные, что делает его более точным, но медленным, а стохастический градиентный спуск быстрее, но может колебаться вокруг минимума из-за случайных обновлений.

BY Библиотека собеса по Data Science | вопросы с собеседований




Share with your friend now:
tg-me.com/ds_interview_lib/795

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Telegram has exploded as a hub for cybercriminals looking to buy, sell and share stolen data and hacking tools, new research shows, as the messaging app emerges as an alternative to the dark web.An investigation by cyber intelligence group Cyberint, together with the Financial Times, found a ballooning network of hackers sharing data leaks on the popular messaging platform, sometimes in channels with tens of thousands of subscribers, lured by its ease of use and light-touch moderation.Библиотека собеса по Data Science | вопросы с собеседований from vn


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA